Generation and manipulation of ‘‘smart’’ droplets
نویسندگان
چکیده
We report the generation and manipulation of electrorheological (ER) droplets that exhibit the giant ER effect. The experiments were carried out on specially designed microfluidic chips, in which the ER droplets were generated by using the microfluidic flow-focusing approach. Both the size and formation rate of these droplets can be controlled through digitally applied electrical signals. The principle of droplet manipulation is based on the electrical responsiveness of ER droplets and hence the denotation of ‘‘smart’’ when the electrical signals can be triggered by sensing/control devices. Due to the unique characteristics of the GER effect, the smart droplets can deform and even stop the microfluidic channel flow under an applied electric field. The pressure difference induced by the smart droplets inside the micro-channel is controllable by varying the field strengths, droplet sizes and particle concentrations in the GER suspension. By trapping and timed release of smart droplets in different micro-branch channels, we demonstrate that the smart droplets generated upstream cannot only be stored or displayed in the desired downstream channel(s) and thereby offer the potential of micro-droplet display, but also be useful in counting, flow directing and sorting the desired number of passive droplets sandwiched between two smart droplets. Such capabilities of smart droplets will enable the programmable control of discrete processes in bio-analysis, chemical reactions, digital microfluidics, and digital droplet display.
منابع مشابه
Manipulation of microfluidic droplets by electrorheological fluid.
Microfluidics, especially droplet microfluidics, attracts more and more researchers from diverse fields, because it requires fewer materials and less time, produces less waste and has the potential of highly integrated and computer-controlled reaction processes for chemistry and biology. Electrorheological fluid, especially giant electrorheological fluid (GERF), which is considered as a kind of...
متن کاملCompound droplet manipulations on fiber arrays.
Recent works demonstrated that fiber arrays may constitute new means of designing open digital microfluidic systems. Various processes, such as droplet motion, fragmentation, trapping, release, mixing and encapsulation, may be achieved on fiber arrays. However, handling a large number of tiny droplets resulting from the mixing of several liquid components is required for developing microreactor...
متن کاملMagnetic Micro-Manipulation of Biocompatible Droplets
Recently, the application of magnetic particles for targeted drug delivery has received considerable attention. For example, manipulation of magnetic particles coated with drugs or encapsulated inside drug droplets into target tissues via external magnetic field has been studied [1]. Usually, a strong magnetic field on the order Tesla is applied outside human body to generate the needed magneti...
متن کاملVoltage Control Approach in Smart Distribution Network with Renewable Distributed Generation
Voltage control is one of the imperative issues in the smart distribution control system. While traditional distribution network is equipped with communication and monitoring equipment, the online voltage control can be perfectly achieved. With using these smart grid technologies, the distribution voltage control schemes should carry out intelligently and cover the undesirable effect of high pe...
متن کاملSerial dilution via surface energy trap-assisted magnetic droplet manipulation.
This paper demonstrates a facile method of generating precise serial dilutions in the form of droplets on an open surface platform. The method relies on the use of surface energy traps (SETs), etched areas of high surface energy on a Teflon coated glass substrate, to assist in the magnetic manipulation of droplets to meter and dispense liquid of defined volumes for the preparation of serial dil...
متن کامل